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A MONTE CARLO INVESTIGATION OF THE S8TATISTICAL
SIGNIFICANCE OF KRUSKAL'S NONMETRIC
SCALING PROCEDURE*
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Recent advances in comlnu%er' based psychometric techniques have
yielded & collection of powerful teols for analyzing nonmetric data. These
tools, although partieulmily well suited to the behaviersl sciences, have
several potentis]l pitfalis. Among other things, there is no siatistical lest
for evaluating the significance of the results. This paper provides estimates
of the statistical significance of results yielded by Kruskal's nonmetric multi-
dimensional sealing. The estimates, obtnined from attempts to seale man
randomly generated sets of data, reveal the relative frequency with whic
apparent structure is erroneously found in uastructured dato. For a small
number of points {i.e., six or seven) it is very likely that s good £t will be
obtoined in two or more dimensions when in fact the dain are pgenerated
by a random process. The estimates presented here can be used ng a bench
mark azainst which to evaluate the significance of the results obtained from
empirically based nonmetric multidimensional sealing.

1. Introduction

Recent developments in psychological scaling [Shepard, 1962a, 1962b;
Kruskal, 1964a, 1964b; Lingoes, 1965] have yielded a collection of computer
based procedures for extracting metric results from nonmetric data. Since
much of the data obtainable in the behavioral sciences is obtained under
circumstances where there is no appropriate metiic, these new procedures
provide powerful tools for the analysis of such data. They are being used
with increasing frequency in a diverse range of applications, e.g., color vision,
Morse Code perception [Shepard, 1963], taste [Russell & Gregson, 1966), col-
lege admissions [Klahr, 1968], marketing [Green, Carmone & Robinson, 19681,

However, the great strength of these new procedures must be tempered
with careful application. Torgerson [1965, p. 381, in reviewing some of the
advances in multidimensional scaling, says:

The new procedures would , .. seem to offer nothing but advantages over the old;

to require very little and to yield very much. Yet there are many problems con-

nected with their use which . . . have not been at all obvious . .. . It is like deing a

factor analysis. And, like factor analysis, the methods slways yield an snswer. But
it can be even more difficult to fully comprehend the menning of that anawer.

*A preliminary version of this paper was presented at the International Federation
for Information Processing Congress 68 in Edinburgh, Beotland, August 5-10, 1968.

310



320 PSYCHOMETRIEA

Torgerson goes on to discuss several of the difficulties. One which he freats
most extensively in his paper i the problem of the very nature of similarity
itself. He shows that under certain circumstances the implicit models under-
lying the scaling technique are quite inappropriate. In particular, the simi-
larity of one item to another often depends upon the context of the judgment,
ie., upon the other relevant items in the collection of things to be judged.
The scaling models do not allow for this kind of variability in similarity judg-
ments,

A second difficulty, the problem of multiple solutions (i.e., non-uniqueness
of the eonfiguration that provides the best fit to the data), has since been
treated by Shepard [1966]. Shepard has demonstrated that for more than eight
points we can be very sure that the solution is unique, and for 15 or more
points we can be virtually certain that we have found the configuration which
best fits the data.

Green [1966] suggests that “‘these . . . procedures need Monte Carlo and
other computer runs to determine their properties. . . "' This paper deals
with one important aspect of nonmetric multidimensional scaling: the sta-
tistical significance of the results. We investigate, through Monte Carlo
simulation, the following question: How likely are we to falsely reject the
Null Hypothesis that the data to be scaled come from a random generator?
There are at present no statistical methods for testing the significance of the
results generated by the scaling procedures. As a first step towards flling this
void, this paper presents estimates of the relative frequency with which ap-
parent structure (i.e., & good scaling solution) is found in randomly generated
data. The resuits to be presented are based upon 2 series of attempts to scale
randomly generated data. They can be used as & bench mark against which
to assess the significance of empirical results.

2. Nonmetric Multidimensional Scaling

All multidimensional sealing procedures assume that there is an under-
lying structure—s spatial configuration of items—in which interpoint dis-
tances are inversely related to empirically determined proximity measures
on those items. The goal of the procedures is to construct such a configuration
from the inter-item proximity measures. For example, if the proximity meas-
ures are judgments of the relative similarity of pairs of stimuli, the scaling
procedure would attempt to construct a spatial configuration in which rela-
tively similar stimuli correspond to points in the space that are relatively
close together.

The three most widely used procedures—Shepard's [1962], Kruskal's
[1964a, 1964b], and Lingoes’ [1966]—are designed for the same purposes.
That is, they yield essentially similar outputs, given the same input. Although
the procedures achieve their desired result in different ways, for the purposes
of our analysis it will suffice to discuss only one of them. Therefore, the re-
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mainder of this paper will be based upon Kruskal’s nonmetrie multidimen-
sional scaling procedure [1964a, 1964b].

The goal of the procedure is to find the spatial configuration of a set of
points in which the rank order of the interpoint distances is maximally in-
versely correlated with the rank order of the corresponding inter-item simi-
larity measures. It starts with an arbitrary configuration of peints and itera-
tively attempts to find some arrangement of the points such that the rank
order of the interpoint distances is exactly the opposite of the rank order of
the similarity measures. When this occurs, we have a configuration that fits
the data perfectly. As the dimensionality of the space is reduced and the solu-
tion becomes more highly constrained, we are apt to get some departures
from perfect fit. Some of the distances may be “out of order.” A measure of
departure from perfect fit, called the “stress’” of the configuration, has been
developed by Kruskal [1964a]; it is quite similar to s residual sum of squares.
From an extensive series of empirical investigations on a variety of data,
Kruskal sugpgests that departure from perfect fit (stress = 0) be interpreted
as follows: .025—excellent; 05—pood; .10—fair. The usual proeedure is to
find the best fit—the minimum stress—in spaces of decreasing dimensionality.
We expect minimum stress to increase as the dimensionality decreases, start-
ing in » -~ 1 spaee with zero stress

The decision as to which configuration is the most appropriate repre-
sentation of items rests upon scientific judgments and is nob a direct output
of the scaling technique. In most applications, the decision is based vpon the
stress, the dimensionality of the space, and the meaningfulness of the final
configuration. Most users have used Kruskal’s suggestions ss to what con-
stitutes an acceptable result in liew of a rigorous statistical test for the signifi-
cance of the stress. Although no appropriate statistical test exists at present,
it is possible to obtain estimates of signifieance through the use of the tech-
niques deseribed in the next section.t

3. Procedure

In all applications of multidimensional scaling techniques the input
consists of some measure of the proximity of each stimulus to all other stimuli,
Whatever the metric for the raw data, the scaling procedure makes use of
only the rank order of proximity measures. For this reason it is possible to
simulate & wide range of empirical proximity measures on n stimuli simply
by using a set of distinet values, one for each of the n(n ~— 1)/2 pairs of n
gtiruli.

To the set of n(n — 1)/2 digtinet pairs of n hypothetical items we ran-

{Bince this work was dore, a similar study by Stenson and Knoll [1969] has nppeared.
covering & different range of parameters: m = 1 to 10 in steps of 1, and n = 10 to 60,
For large n, there is much less variance in the final stress, and the averspes based on 3 data

gets are sufficient. For the small n studied in pur paper, there is & need for more samples.
The two papers eover & wide range of conditions for MDSCAL.
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domly assigned values from a uniform distzibution on the open interval from
0 to 1. One hundred such sets of randem proximities were generated for each
value of n = 6, 7, 8 and 10; fifty seis each were generated forn = 12 and 16.
Every one of the 500 sets was scaled by Kruskal’s nonmetric multidimensional
scaling program in spaces having from 5 to 1 dimensions. The paramefer
values that control Kruskal’s program were: minimum stress soughf—zero;
maximum number of iterations—73; type of proximity measure-digsimilari-
ties; spatial metric-—Euclidean.
4. Resulls

Usually, the primary intent of scaling is to obtain a “picture” of the
final configuration. However in this study, since the configurations are con-
striucted from random data, they are of no intrinsic interest. Instead, we focus
attention on the stress of each final configuration, for it is the behavior of
stress under conditions of pure noise that this study seeks to portray.

For each value of n we have plotted the cumulative distribution of the
final stress values from one, two and three dimensional configurations in Fig-
ures 1 through 3 respectively. If an analytic expression could be developed for
the statistical behavior of the stress, then it would presumably be eapable
of generating a family of curves quite similar to these empirical estimates.
In Table 1 we present some summary statistics for each value of n. The num-
ber of solutions less than or equal to Kruskal's “good” (058) and “excellent’
(.025) stress levels are included, along with the maximum, minimum, average
and standard deviation of final stress values. Table 2 contains some selected
percentile points from the cumulative distributions of final stress. Figure 4
is & plot of the sverage final stress shown in Table 1.

5. Discussion

These data may provide some assistance in detecting and avoiding
spurious scaling solutions. As Shepard [1966] found in his study of uniqueness,
results are extremely sensitive to n, the number of points, when n is low.
Tor example, “good” solutions (i.e., stress £ .05) are often attainable for
6, 7 or 8 points in 3 dimensions when in fact the proximity measures are
randomly generated. (For 6 points, 96 out of 100; for 7 points, 74 out of 100;
for 8 points, 33 out of 100.) A small increase in the number of points (e.g.,
n > 10) provides a substantial reduction in the likelihood of this kind of
bogus solution: none of the cases yields good stress for n > 10.

The average finsl stress, shown in Figure 4, is well behaved in two senses;
for a given number of points, stress increases with decreasing dimensions;
for a given number of dimensions, stress increases with increasing points.

One of the criteria that Kruskal suggests for selecting the appropriate
dimensionality is an “elbow” in the plot of stress vs. dimensionality, i.e., a
major decrease in the marginal improvement effected by an additional dimen-
sion. The lack of distinetive elbows in the plots in Figure 4 arises from the



323

DAVID KLAHR

o
T

Teury Jo LousnbelJ SATARTAI JO SUOTHNQIILSTP SATYRTIEM)-~°T *3pd

9]0} 4
T

ggg
T

ooge’
T

oge”
1]

SSHYLS  TINIS

002
1

ol
T

ool
f

-squrod T PUR ‘2T ‘Or ‘g 'L ‘9 IoX uoTseInBTIUOD TRUOTSUSWIP T ® UL §5aJ3

050’
n

o
(=

91

N

2i=N

Ol=

1

3

3 8 2 9
AON3ND3YS

)
™)

IALY13Y



PSYOCHOMEIRIEA

324

oog’

oSy’
E

~squtod gt pue ‘2T ‘0T fg ‘L ‘9 I07 UOTYEIMBTIUOD TBUSCTIUIWID 2 B Ul 559138

Teuty Jo Lousnball SATIVTRI JO SUOTIROTIFS TR 3ATGRInUM)~~*Z “Bra

SSHHiS  TIUNIA

Q0% 0G6e’ 0%’ 0ge’ Q0¢’ 08!’ 001
1 T 1 1 1 T T

.

H

T T 1 1 3 1 1

e

o

1
=

N

\
2
NIV 1Y

i |
Q O
0 <

)
e
@

2
AON3NOIIA

I
o
o0

<00




325

DAVID ELAHR

Q0g’

*squted gf pue ‘2T ‘0T °g ‘A ‘g J03 UOTFAINITIUOD THUOTSUSWIP £ B UT ES3I4E
TeuTI Jo Aouenbsil SATIRTRI JO SUCTINGLIASTD SATsRTHUND-=*f *Bry

SSEYLS TIWNI4

0st’ oov gge’ 1ol 052" s]o] Qg1 ool
1 I 1 1 4 1 11

E

or

Q
123

o0g

og’

o
~

oo

ALY T3

AONINOIYS



PSYCHOMETRIKA

326

*0 goo*o #6500 eqi‘0 HIEO 88910 G TeUTd WHITUTH
28000 9600 o 920 9670 FESXY TOULI WRITXEH
8988 00T E£T0°0 1100 020'0 G800 gEQ"o sB¥SaIly TRUL] JO UOTSRTASC PIBDIBIS
squrod 0T 63070 800 SO0T'0 TOZ'0 000 gsaxlg TOULd o8eiosy
[ £ 0 0 s} FagEaIlS TOUTE ,JUSTTO0XE, JO daqunt
z6 gg 0 0 o} goggeIYg TEUTL POON, JO JIqunfl
0 0 ) 650°0 2220 §59195 TBUTI WNUTUTH
gloto 6L0°0 2210 092°0 olro §$0I08 TOUT] TMUTXER
8438 Q0T go0'0 gte*o L2000 B0 O §80°'0 99880I28 TPULL JO UOTLETAS( BPIBPUBLS
gquTOZ g 200°0 910°0 690°0 09T"0 got"0 S§eILg TEULI ouiIsAY
66 al ! s 0 9088945 TEUL] ,JUSTTSDXE, JO I9qumy
66 &6 (3% 0 0 §8559I38 THILI POOD, JO Joqumy
0 0 0 0 AiT0 §9998 THUT] WNTUTH
TO0T0 £20°0 TOT O greto Ligto SERILE TRULL UMETXEH
§998 Q0T ‘0 4000 0£0*0 €400 990°0 sessad4y TRUTI JO UOTIRTAS( PIBRURLS
gqurod 4 0 20040 TEQ O TL°0 2EE o 'sB8I18 THULIL sfedany
001 00T £ £ o g3ggsxqy TeUld (JUBTIe0XE, JO Joqumfy
001 001 4l L 0 59559298 TEUTI ,POODH, JO Ioqumy
"0 "0 "0 "0 *0 990035 TOULS WAWTUTH
0 T06°0 $50'0 g12'0 TiH0 §59198 TEUL] WMUTIEN
3388 00T ‘0 ‘0 LTOTO £80°0 1600 §35E8I3S TBULL JO UOTIRTAS{ DIEPUBLS
gqutod g ‘0 0 500°0 olo o jeter Ae] 583318 TRUTLL oHelany
001 001 6 1z f §OSSRIYg TRUTH ,HUSTIOUT, JO ISqUM
001 00T 96 6% E seEEeIyg TBULI poon, JO IaqEni

[ i 15 2 I

SUOLSUSWEQI JO JSQUI

ES5I%8 QUSTTOOXY DUB Doch ‘UM ‘Xel ‘ucrieTaRQ

prepieis ‘ofelsay

1Uny OTTR) 8NUOH WOX] FOTLSTIELS LIsumumg

T TIEVL



DAVID ELAHR

710°0 90T 0 99T 0 lEz2'0 Hhoh*o 889135 TOUL WTUTH
Lateo 25T 0 oz o gok'o 5060 §58.10F TEUT] WOWEXEH
s98s 0§ TIO'O TIO'0 0TC 0 {T0*'0 810" 0 S9583a35 TBULI JO UOTIBTAS( PIRpPUR]S
squtod 91 9600 OET'O 68T 0 6Lz 0 £hgo 580198 TBULI SSalory
0 0 0 0 0 99889138 TRULI [ JUSTIOONT, JO JI2qmy]
o] 6] 0 o 4] g95EsI9g Teulrd ,Poch, JO JISqumpl
420°0 6400 BTT°0 012*0 1880 862135 TBULL WUTTUTH
6600 ET 0 gL1°0 gRc 0 960 SSOI15 TRUTL UWIWITXRR
g988 & GTICTO 910" 0 9To*o ATO'O G200 R8T THULI JO UOTIRTAS(] DIepleng
sautod z1 LS00 Qae o HHT*O onato it 0 599198 TRUTY afeIasy
0 0 0 0 0 83593198 TRUTI ,3USTTa0XI, JO JIegumy]
a1 T o G Q 59292198 TEUTL ,POOD, IO JI2quUmy

< ] £ 2 T

FUOTSUSWI( JO IDQUMN

PONUTATO)=~T HTIVL



328

PEYCHOMETEIEA

TARLE 2

Selepted Percentile Points From Cumuletive
Distributions of Finml S5tress

Percentile
5 10 25 50 75 2;2] 95

1 .11 ival 227 296 .363 o L

2 .000 .000 .023 065 .107 .138 .148 6 point
Dimensions 3 000  .000  .000  .000  .000 .00k 020 . DO

L .00 L0000 .000  .0GO  .000  .0OD  .O0O Bevs

5 000 .000 .000 Nele's} .000 .00 000

1 .208 230 .285 .33h 381 Wy Lp7

2 .oko 060 086 <18 142 .168 JATE 7 points
Dimensions 3 .000  .000  .00% 021 .05  .O77 .09k mSOsn*

L ,000 000 000 Q00 .oD0 006 . 009 Bus

5 .000 . 000 . 000 .000 . 00D D00 . 000

1 .276 .298 326 .396 b1z k39 b56

2 .1 120 .132 157 .83 206 215 g ks
Dimensions 3 .022  .028  .obs  .08h  .08h .00 .10k 1o§°mt

L ,o00  .o00  .00E .0M0 .03 .Oh2  .O%O sets

5 000 .000 000 000 001 .005 00T

I .333 .3kg .373 Loy b2t i) R

2 .1i53 .169 .80 L2082 .216 232 .2kb 10 points
Dimensions 3 .068 .078 .092 .107 .19 129 .136 100“5225

L .oz7 .035 .ok .054 067 LOT7 079

5 .00k 009 L0118 .o2h .032 Nt t) 050

1 LJhop 408 =]} L .45 hgt .ugs

2 .P1 .215 228 .237 .B50 .2 .269 .
Dimensioms 3 .18  .120 .14  .1hs 133 .169 .17k 1 Eﬁ:“

i .otz .ot2 .07 .06 .09k .03 .8 O se

5 .032 037 .ol7 057 063 .078 083

1 .h3h . 2;25 163 . ugh . hgs Jhg2 . hgg

2 .257 261 270 282 .289 .293 .2 .
Dimensicns 3 370 .1yl 178 .186  .xgl  .195  .203 J,);ggzé‘;ts

A 1 2118 121 .129 .138 inn ~1h7

5 .O7T .083 .089 096 .102 L2 2118

averaging of many curves, some with quite distinctive elbows at different
dimensionalities. Thus Figure 4 should not obscure the fact that pure noise

may give the spurious appearance of a true dimensionality.

The importance of these findings to a user of Kruskal's program rests
upon the manner in which the sealing procedure is being used. If it is being
used to test a priori hypotheses sbout the dimensionality or spatial arrange-
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ment of & stimulus set, then the significance criterion is but one of many pieces
of evidence that can be used in interpreting results. However, if the scaling
procedure i3 used in an exploratory study, where there are no a prior? notions
about the configuration, then any results for only 8 or 9 points in 2 or 3
dimensions cannot be considered very convincing evidence for the existence
of structure. For example, from Figure 3 it is evident that with eight points
there are about 2 chanees in 3 that pure noise eould be accounted for in 3
dimensions with a stress less than .075. If the experimenter is at the design
stage, then he can use these results as a Jower bound on the number of stimuli
be will need in & situation where he suspects a certaln number of dimensions.

8. Conclusion

The scaling procedure discussed in this paper is one of a class of new
techniques that are so powerful and convenient that they are being used as
exploratory devices to see if any structure exists in a set of proximity measures.
If n is small, and if a low stress constitutes the only evidence of structure, then
any results may be meaningless. The estimates of significance presented here
can be used as a bench mark against which to assess the meaningfuiness of a
wide variety of multidimensional secaling applications.
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